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We demonstrate that electromagnetic waves propagating in square and hexagonal photonic crystals can have
fundamentally different anisotropy properties. The wave frequency and group velocity can be functions of the
propagation direction even for vanishingly small wave numbers �near the �-point�. This anisotropy, present in
square but absent in hexagonal lattices, can be so extreme that the group velocity can be either parallel or
antiparallel to the phase velocity depending on the propagation direction. An analytic explanation of this effect
based on the k� · p� perturbation theory and group-theoretical considerations is confirmed by electromagnetic
simulations. One manifestation of the extreme anisotropy is the divergent van Hove singularity in the density
of photonic states at the �-point. New applications, including surface-emitting quantum cascade lasers, are
proposed.
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Periodically arranged dielectric �and metallic� composites
known as photonic crystals �PC’s� have attracted a lot of
interest in the past few years due to their ability to control
electromagnetic �EM� wave propagation on and below the
wavelength scale. PC’s have found numerous applications in
optics and optoelectronics �1�. Their unusual electromagnetic
properties are derived from Bragg reflections giving rise to
multiple propagation bands separated by the band gaps. It
was realized early on that the symmetry points of zero group
velocity at band edges can be exploited for various applica-
tions, including beam self-collimation �2�, superprism effect
�3�, surface-emitting photonic crystal lasers �4,5�, polarizers
and wave plates �6�, and negative refractive index �7–9�.
Those points, which include the center ��-point� and the cor-
ners of the Brillouin zones, are characterized by high density
of states, possibility of degeneracy, and, as we describe in
this paper, nontrivial shapes of the equal frequency surface
�EFS� in their vicinity.

The EFS concept is fundamentally important for predict-
ing wave refraction at the PC interfaces �10�. We investigate
the anomalies of wave propagation for small wave numbers
k�, i.e., near the �-point �also often referred to as the center of
the Brillouin zone�. It is common to assume that, for k�→0,
the EFS of a propagating EM wave in a highly symmetric
�square or hexagonal� photonic crystal has a circular shape,
making the wave propagation isotropic. This assumption fol-
lows from a simple mathematical fact: if the frequency � is
an analytic function of a small k�, then it must be expressible
as �2=�0

2+gmnkmkn. Because gnm must be invariant with re-
spect to the symmetry transformations of the crystal, the only
option for the square or hexagonal lattices is gmn=C�mn,
where C is a constant, and �mn is the Kronecker delta. The
circular shape of the EFS has important consequences. For
example, the phase and group velocities of the propagating
waves are either parallel or antiparallel, depending on the
sign of C. An elegant Hamiltonian optics description of wave
propagation and refraction in PC’s is also enabled �11�.

Sufficiently far away from the �-point, EFS surfaces can,
of course, become noncircular �e.g., elliptic, or even hyper-
bolic near the edges of the Brillouin zone �12��. The empha-

sis of this paper is on the properties of the EFS near the
�-point. This point is not only special from the fundamental
standpoint �small k� expansion, for example, enables a ray
optics description of light propagation in a photonic crystal
with slowly varying parameters �13��, but also has important
implications for surface-emitting devices. For example, the
recently realized �5� surface emitting quantum cascade pho-
tonic crystal lasers were shown to lase at the frequency close
to the center of the Brillouin zone.

We have found that if a propagation mode is doubly-
degenerate at the �-point of the photonic dispersion curve,
the EFS surface can be noncircular even for vanishingly
small Bloch wave numbers. The anisotropy can be so strong
that the angle between the phase and group velocities varies
between 0 and 2� depending on the propagation directions.
The resulting EFS has a hyperbolic shape near the �-point of
the Brillouin zone. We refer to this strong anisotropy near the
�-point as the extreme anisotropy. The noncircular EFS
shape near the �-point has practical implications described
towards the end of this paper. Whether such extreme aniso-
tropy is indeed manifested is determined by the symmetry of
the photonic crystal and its normal modes. We demonstrate
that there is a crucial distinction between otherwise very
similar square and hexagonal photonic crystal lattices; only
the former can exhibit the extreme anisotropy.

In the remainder of this paper only TE modes �14� propa-
gating in the �x ,y� plane with the nonvanishing Hz, Ex, and
Ey field components are considered. Very similar results can
be obtained for the TM modes. The crystal is assumed infi-
nite in the z-direction. The wave equation for the TE modes
of a PC can be solved inside the unit cell of the lattice,

− �� · „�−1�x,y��� Hz… =
�2

c2 Hz, �1�

where Hz is subject to the periodic boundary conditions
Hz�r�+a��=Hz�r��eik�r�, a� is a vector connecting the opposite
edges of the unit cell, and k� is the Bloch wave number that
belongs to the irreducible Brillouin zone �14�. The dielectric
permittivity ��x ,y� is a periodic function defining the photo-
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nic crystal lattice. Two types of lattices shown in the insets in
Fig. 1 were considered: a square and a hexagonal arrays of
air holes in silicon ��Si=12� of diameter d=0.8a, where a is
the lattice period. Numerical solution of Eq. �1� as an eigen-
value problem for ��k����2a2 /c2 using the finite elements
code FEMLAB �15� yielded the dispersion curves ��k�� plotted
in Fig. 1.

In addition to the �-point �GP�, the other two high sym-
metry points shown in Fig. 1 are: X �k� =e�x� /a� and M �k�
= �e�x+e�y�� /a� for the square lattice shown in Fig. 2�a�, and
M �k� =2e�y� /�3a� and K �k� =4�e�x /3a� for the hexagonal lat-
tice shown in Fig. 2�b�. We labelled the multiple propagation
bands according to their symmetry at the GP. The symme-
tries and degeneracies of the GP solutions are determined by
the symmetry of ��x ,y�. For example, the square lattice has a

point group C4v with five irreducible representations �IR-
REPS�: four singlets �A1 ,A2 ,B1 ,B2�, and one doublet E �16�.
Consequently, only one- and twofold degeneracies in � are
present in a square lattice at the GP. Point group of a hex-
agonal lattice is C6v, with the same singlet IRREPS as C4v
and two doublet IRREPS �E1 and E2�.

The qualitative differences in the wave propagation near
the GP for the two high-symmetry lattices are uncovered by
plotting the EFS for the doubly-degenerate bands E and E2 in
Fig. 2. The EFS contours shown in Fig. 2 were obtained
using the finite elements code FEMLAB �15�. In the vicinity of
the GP the difference between the two lattices is striking: the
hexagonal lattice has a circular EFS corresponding to isotro-
pic wave propagation, whereas the square lattice has a hy-
perbolic EFS corresponding to strongly anisotropic propaga-
tion. For example, the frequency decreases away from the

FIG. 1. �Color online� TE propagation bands ��k�� for the PC
consisting of air holes of diameter d=0.8a in silicon: �a� square
lattice, and �b� hexagonal lattice. Four unit cells of each lattice are
shown in the insets. Bands are labelled by their symmetry at the
�-point. Band frequencies are scanned along the following direc-
tions inside the irreducible Brillouin zones: �-X �0�k� �e�x� /a�
and �-M �0�k� � �e�x+e�y�� /a� in �a�, and �-M �0�k�

�2e�y� /�3a� and �-K �0�k� �4�e�x /3a� in �b�.

FIG. 2. �Color online� Equal frequency surfaces �EFS� for the
lower-frequency branches of the degenerate at �-point bands: �a�
the E-band of the square lattice, and �b� the E2 band of the hexago-
nal lattice. Frequencies are labelled by ��−�0�a /2�c, where �0

=��k� =0�. For �a� �0a /2�c=0.4587, for �b� �0a /2�c=0.6156.
Photonic crystal parameters: same as in Fig. 1.
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�-point along the �-M direction and increases along the �
-X direction. Therefore, the group and phase velocities are
parallel along the principal directions of the lattice and anti-
parallel along the diagonal directions. The effective mass
tensor of a photon �2� /�km�kn has no definite sign; it de-
pends on the propagation direction. The Brillouin zone is
thus split into the regions of positive and negative ��k��
−���� by four ��k��=���� curves shown as thick lines in
Fig. 2�a�, where ������0 is the frequency at the �-point.
Noncircular equal frequency surfaces present intriguing im-
plications for several applications, and also seem to be in
contradiction with the simple analyticity argument presented
earlier that implied �2=�0

2+Ck�2. Below we present a simple
perturbation theory supporting the existence of the noncircu-
lar EFS. It is found that the frequency can become a nonana-
lytic function of k� if it is degenerate at the �-point. We also
note that the lengths of the isocontours ��k��=���� are finite
for the square lattice �shown in Fig. 2�a� as thick lines� and
vanishing for the hexagonal lattice. As will be discussed be-
low, this has important applications for the density of photo-
nic states S��� in the vicinity of the �-point: S��� turns out
logarithmically divergent for the square lattice and conver-
gent for the hexagonal lattice.

The perturbation theory with respect to the Bloch wave
number k� is related to the k ·p method in the electronic bands
theory of solids �17�. It has been recently applied to the 2D
�8,18� and 3D �19� photonic crystals. Magnetic field Hz is
expressed as a Bloch wave: Hz�x ,y�=��x ,y�eik�r�, where r�
= �x ,y�, k� = �kx ,ky�, and � is a periodic function. Inserting Hz

into Eq. �1� and introducing ���2 /c2, obtain an equation
for � :H��x ,y�=���x ,y�, where H is given by

H�k�� = − ��
1

�
�� − ik��2

�
�� + �� �� +

k2

�
. �2�

To apply the standard perturbation theory, first consider the
unperturbed solutions of the eigenvalue equation H�0��n

�0�

=�n
�0��n

�0�, where H�0�=H�k� =0� is the unperturbed Hamil-
tonian. Note that �n

�0� are the earlier discussed GP-solutions
of the nth propagation band, their symmetry governed by the
symmetry group of the PC. The perturbed k�-dependent solu-
tions and the corresponding eigenvalues of the full wave
equation H�k���=�n�k��� are found by including the pertur-

bation V=−ik� · �2�−1�� +�� ��+k�2 /�.
For nondegenerate �n

�0� �GP-solution is a singlet� the
lowest-order perturbation theory yields �20�: �n=�n

�0�+Vnn

+	m�nVnmVmn / ��n
�0�−�m

�0��+¯, where the matrix elements
of V are defined in the basis of GP functions: Vkl

=
dx
dy�k
�0�V�l

*�0�, with integration carried out over a unit
cell. A singlet eigenvalue is thus an analytic function of the
Cartesian components of the Bloch wave number kx and ky.
The lowest order expansion in powers of k yields ��k��
=��0�+gmnkmkn+¯, where gmn is a fully symmetric second
rank tensor invariant with respect to the symmetry group of
the crystal. Therefore, gmn=C�mn, and �2=�0

2+Ck�2 for all
nondegenerate bands of the square and hexagonal lattices.
We have numerically verified that the EFS of the

A1 ,A2 ,B1 ,B2 bands shown in Fig. 1 are indeed circles. Note
that the odd powers of k� must vanish in the expansion of �
=�2 /c2 because of the inversion symmetry of the considered
hexagonal and square crystals.

For the degenerate �n
�0� �GP-solution is a doublet� the

secular perturbation theory �20� yields the �n�k��’s as the ei-
genvalues of the secular matrix W:

Wnn� = Vnn� + 	
m�n,m�n�

VnmVmn�

�n
�0� − �m

�0� + ¯ , �3�

where 1	n ,n�	2 for the doubly-degenerate band. Matrix
elements Vnm �analogous to the transition amplitudes in
quantum mechanics� connect the members of the doublet to
each other as well as to the other bands. The perturbed ei-
genvalues � are found by solving the equation �2− �Tr W��
+det W=0, with the solutions

�± =
Tr W

2
±��Tr W�2

4
− det W . �4�

Thus, � �and the wave frequency� is a nonanalytic func-
tion of k�. Therefore, one cannot presume � to be the function
of k�2 on the basis of its analyticity. Whether ��k�� is isotropic
or anisotropic depends on whether the photonic crystal lat-
tice is square or hexagonal. From Eq. �4� the eigenvalues
can be expressed to the O�k2� order as �±

= P2�kx ,ky�±�P4�kx ,ky�, where Pn�kx ,ky� are polynomials of
order n in k�. The only invariant with respect to C4v or C6v

symmetry groups second-order polynomial is P2�k��=kx
2+ky

2.
The difference between the hexagonal and square lattices
appears in the invariant fourth order polynomials. For the
hexagonal lattice the only such polynomial is the isotropic
P4

�1��k��= �kx
2+ky

2�2, whereas for the square lattice an aniso-
tropic invariant polynomial exists: P4

�2��k��=kx
2ky

2. Therefore,

for the hexagonal lattice we expect �±=
1k�2±�
2k�4

�fully isotropic�, and for the square lattice �±

=
1k2±�
2k4+
3kx
2ky

2 �in general, anisotropic�, where 
1–3
are constants.

The degree of anisotropy of a degenerate propagation
band in a square lattice is determined by its nearby bands. As
an example, consider the E-band shown in Fig. 1�a� known
to be extremely anisotropic from Fig. 2�a�. This can be ana-
lytically proven by keeping only the two closest bands A1
and B1 in Eq. �3�. Contributions of the more distant in fre-
quency bands are reduced by the �mn

�0� ��n
�0�−�m

�0� factor. We
label the adjacent singlet levels 0 and 3, reserving the num-
bers 1, 2 for the degenerate band. Because Tr W=W11+W22
is proportional to k2 �isotropic�, the isotropy or lack thereof
is determined by that of det W according to Eq. �4�. Because
det W=−�det Q�2 /�10

�0��31
�0�, where

Q = �V10V13

V20V23
� ,

the doublet is anisotropic whenever det Q is an anisotropic
polynomial. Properties of det Q depend on the symmetry
properties of �0 and �3. It turns out that if the closest singlet
levels are A1,2 and B1,2, then det Q is anisotropic. For other
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level configurations det Q is either isotropic or zero. For our
example of the E-band sandwiched between the two singlet
bands A1 and B1 we find that �det Q�2�kx

2ky
2 resulting in an-

isotropy.
We have numerically calculated the dimensionless


-coefficients for the the E-doublet shown in Fig. 1�a� which
are defined as

�2

c2 = 
1
2�k��2 ± �
2�k��4 + 
3kx

2ky
2�1/2, �5�

where the plus �minus� signs correspond to the upper �lower�
doublet bands, respectively. All 
’s were found to be posi-
tive: 
1=0.212865, 
2=0.01725, 
3=0.7904. Because �
1
+�
2�� �
1−�
2�, the lower band supports much smaller
group velocities along the principal axis than the upper band.
Only the lower band of the E-doublet exhibit hyperbolic EFS
in the vicinity of the �-point. We refer to the resulting aniso-
tropy of the wave propagation as extreme. More precisely,
anisotropy is referred to as extreme or moderate depending
on whether the effective mass �2� /�k2 of a photon changes
its sign as a function of the k� direction or not. If it does not,
the EFS are still convex �although not circular�. That is the
case for the upper frequency branch of the E doublet in Fig.
1. On the other hand, if �2� /�k2 changes sign, the EFS be-
come hyperbolic and anisotropy extreme, as it is the case for
the lower frequency branch of E shown in Fig. 2�a�. Note
that the hyperbolic nature of the EFS in the vicinity of the
�-point can be deduced even from the band structure shown
in Fig. 1�a�: the frequency of the third doubly-degenerate
band �labelled E� increases in the �-X direction and de-
creases in the �-M direction.

It is well known in the theory of solids �17� that nonana-
lyticity can lead to electron and hole mass anisotropy in the
vicinity of band crossings, resulting in the constant energy
surfaces shaped as “warped” spheres. However, anisotropy
near the band minima �where it affects electron properties of
a solid� is never strong enough to change the sign of the
effective mass depending on the propagation direction. On
the other hand, the extreme anisotropy in square lattice pho-
tonic crystals manifests itself in remarkable refractive prop-
erties as explained below.

Hyperbolic EFS near the GP has several remarkable con-
sequences for wave refraction that, we speculate, could find
useful applications in integrated optics. Consider a TE-
polarized EM wave incident in the x-y plane at a small angle

inc with respect to the normal onto an air/PC interface. The
interface is assumed normal to x-axis and the wave fre-
quency �M ����0, so that only the lower �extremely an-
isotropic� branch of the E-band is excited for small 
inc. For
our specific example we chose �0a /2�c=0.4587,
�Ma /2�c=0.4170, and �a /2�c=0.4580. Propagation of the
refracted into the PC wave can be determined �10� by the
conservation of ky. The normal to the EFS for a given ky
determines the group velocity inside the PC. In Fig. 3 we
plot �solid line� the dependence of the group velocity angle
in the crystal 
gr vs the incidence angle 
inc, both with re-
spect to the normal. This dependence is unusual in two re-
spects. First, there is a total reflection from the air/PC inter-

face for small incidence angles 
�
min�0.03. The effect of
small-angle total reflection cannot be realized for elliptic
EFS, and can be used for designing novel low-group velocity
waveguides. Second, for a range of small incidence angles

min�
�
max�0.25 two distinct refracted waves propagate
into the PC. The small-angle birefraction was confirmed by
us by solving for a wave incident from air on a PC. In the
inset in Fig. 3 we have plotted the cell-averaged
y-component of the Poynting flux 
Py� of the refracted wave
as the function of the depth x into the PC. Realistic for �
=0.75 �m losses in Si were accounted for by using �=12
+0.06i. Diamonds correspond to the large incidence angle

inc=0.4. Only one wave is refracted and exponentially de-
cays into the crystal. Smaller incidence angle 
inc=0.1 results
in two refracted waves as indicated by their beating
�squares�.

Hyperbolic shape of the EFS can also be explored in de-
signing directional surface-emitting photonic crystal �SEPC�
lasers. SEPC quantum cascade lasers can be realized �5� by
etching a two-dimensional array of holes through the laser
active region. Vertical confinement is provided by the semi-
conductor and a metal film on top. A 2D PC simultaneously
diffracts light vertically from the surface of the structure �out
of the holes� and provides the in-plane confinement that is
particularly strong near the high-symmetry points where vg
is small. Indeed, recent experiments �5� observed the highest
optical power in the vicinity of the doubly degenerate
�-point of a hexagonal PC. Directionality can then only be
accomplished by shaping the PC cavity. Hexagonal crystals
do not exhibit any anisotropy near the �-point as was shown
below. They do, however, exhibit low group velocity near the
�-point, and that is very advantageous for laser miniaturiza-
tion. We suggest here that the square lattice SEPC laser may
have advantages over its hexagonal lattice cousin. Specifi-

FIG. 3. �Color online� Refractive effects caused by the hyper-
bolic shape of the EFS at the frequency below the �-point ��
=0.45802�c /a� of a square PC. Crystal parameters: same as in
Figs. 1 and 2. Main axes: group velocity angle of the refracted into
PC wave�s� vs incidence angle. Inset: Cell-averaged Poynting flux

Py� into the PC. Squares: small incidence angle 
in=0.1 rad: two
refracted waves are present and interfere �bi-refraction�. Diamonds:
large incidence angle 
in=0.4 rad: single refracted wave.
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cally, the increased directionality of the in-plane band struc-
ture of a square lattice described in this paper may be used to
emit light in a narrow range of angles from a SEPC laser. To
see how in-plane dispersion relation determines the emission
direction, consider EM fields in the holes on the surface of a
laser oscillating with a relative phase shift determined by the
in-plane Bloch wave numbers k� excited in the 2D PC. The
flux from the surface in the far field zone at the location r� is
proportional to the form-factor of the lattice, F
= �	hei�k0n��−k��·r�h�2, where k0�� /c, n� � = �r�−e�z ·r�� /r, r�h are the
positions of the holes on the surface, and the summation is
over all holes. For a large PC F��2�n� � −k� /k0�, which means
that the horizontal direction of emission is controlled by the
in-plane Bloch wave number k�.

If the gain has a maximum at the frequency slightly below
����, only the in-plane wave numbers in the four ������
triangles �circumscribed by the thick ��k��=���� lines�
shown in Fig. 2�a� are excited, and directional emission is
accomplished. Moreover, the hyperbolic shape of the equal
frequency surfaces dramatically increases the density of op-
tical modes due to the Van Hove singularity �12�, thereby
increasing the spontaneous emission rate and the laser gain.
This can be appreciated from the expression for the density
of states �21� in a photonic crystal,

S��� � 	
m
�

C��m�

dkt

vg
, �6�

where C��m� is the EFS corresponding to �=�m, the sum-
mation is carried over the index m labelling multiple discon-

nected EFS’s corresponding to the same frequency, and kt is
the projection of k� onto the tangent to the EFS Cm�C��m�.
Because in the vicinity of the �-point group velocity van-
ishes, the convergence or divergence of the density of states
is determined by the length of the C��m�, Lm, in the limit of
�m=��. If Lm also vanishes for �m=�� �as it is the case for
concave/convex Cm’s�, then the density of states is finite.
One example of a convex Cm is presented in Fig. 2�b� for a
hexagonal photonic crystal. If Lm is finite, then the density of
states diverges as S���� log�����−��. For example, for the
lower band of the E-doublet, Cm’s for �m=�� are shown in
Fig. 2�a� as thick lines. Because those lines have finite
lengths, the density of states is divergent.

In conclusion, we have demonstrated that electromagnetic
wave propagation in the vicinity of the �-point can be ex-
tremely anisotropic in a square lattice two-dimensional pho-
tonic crystal. Extreme anisotropy occurs only in the propa-
gation bands degenerate at the �-point. In our case this
anisotropy also manifests itself in extremely low group ve-
locity in the principal directions. The angle between the
group and phase velocities in such a crystal varies between 0
and 2�. The shapes of the constant frequency surfaces of the
extremely anisotropic propagation band are hyperbolic. One
consequence of that is the logarithmic divergence of the den-
sity of states near the �-point. Possible applications include
surface-emitting photonic crystal lasers that can be made
more efficient and directional by the extreme anisotropy of
the emitted electromagnetic waves.
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